

Microsoft
® Foundation Class Library 2.0:

C++ Application Framework for
Microsoft WindowsÔ

 and
Microsoft Windows NTÔ

White Paper

June 1993

For more information contact:

Microsoft Corporation
Eric Lang, (206) 882-8080

Waggener Edstrom
Martin Middlewood, (503) 245-0905

Table of Contents

µIntroduction...1
Distinguished Benefits...3
MFC 2.0 Components..4

Architecture Classes...4
Commands..4
Documents and Views..5
Printing...6
Dialog Data Exchange and Validation (DDX/DDV)...................................6
Help...7

High-level Abstractions..7
Form View..7
Edit View..8
Scrolling View..8
Splitter Window..8
Print Preview..8
Toolbar..9
Status Bar..9
Dialog Bar and Control Bar..9
OLE 1.0 Support...9

Windows API Classes..10
Standard Application Support..10
Frame Windows..10
Controls...10
Graphics/GDI..10
Dialogs..11

General-purpose Classes..11
Run-time Object-type Information...11
Object Persistence...11
Data Structures..11
Strings...12
Files...12
Time and Date..12
Exception Handling..12

Debugging and Diagnostic Support...12
Professional Windows-based Development...13

Sample Program: MultiPad...13
Developer Support...21
Scalable Architecture for the Future..22
Design Philosophy...22
Microsoft Foundation Classes 2.0: Class Hierarchy...24
Appendix A: AppWizard..25
Appendix B: ClassWizard...28

Introduction

The Microsoft® Foundation Class Library 2.0 (MFC 2.01) is a robust C++ application framework
designed for writing applications in C++ for the Microsoft Windows™ and Windows NT™
operating systems. Built upon the core set of functionality in the MFC 1.0 application framework,
MFC 2.0 adds an architecture and set of prebuilt components that make it possible to write
professional, full-featured applications for Windows in a fraction of the time it would take using C
and the SDK or other application frameworks. MFC 2.0 offers a high level of abstraction that lets
you focus on the details specific to your application, while allowing its classes to be customized
and extended. Like its predecessor, MFC 2.0 also allows access to the native Windows
application programming interfaces (APIs) for maximum flexibility and power.

MFC 2.0 makes programming in Windows and C++ a much more productive endeavor. Through
its carefully designed architecture, MFC 2.0 provides substantial programming power in an
intuitive and uncomplicated package.

MFC 2.0 offers more than 100 reusable C++ classes, including general-purpose classes that
support the
non-graphical portion of your application, classes for the core Windows graphical user interface
(GUI) features, architectural classes to help you organize and structure your application
programming and high-level abstractions and canned functionality that provide major building
blocks. Rigorous tuning and optimizing of the source code has resulted in very fast execution
speeds and small executable sizes that are comparable to C.

The Microsoft Application Framework (AFX) group received a great deal of feedback on MFC
1.0 that was based upon many real-world projects and shipping applications. Microsoft received
critical acclaim from both developers and the press, and were generally recognized as the
“standard application framework for Windows.”2 AFX also received hundreds of suggestions and
feature requests through CompuServe®, our MSAFX e-mail address and the dozens of conferences
and shows where we sent AFX team members to hear from users who had developed mission-
critical applications with MFC 1.0. MFC 1.0 was also provided as part of the Windows NT PDK
program, which provided additional feedback from the beta developers of Windows NT . MFC
2.0 implemented many of these requested features, and this release of the application framework
truly represents the collective wisdom of our user community. The ability to incorporate user
feedback is important to the AFX group and will continue to be as we improve MFC for future
releases. We also practice what we preach, and the AFX team at Microsoft has been using MFC
2.0 for our products as well. As a case in point, App Studio, AppWizard and ClassWizard were
all built using MFC 2.0.

The Microsoft Foundation Classes are appropriately named because they represent the foundation
of a class architecture that is constantly evolving to bring developers the best support for the

1In this document MFC 1.0 refers to features and metrics specific to the Microsoft Foundation Classes 1.0. MFC 2.0 refers to features and
metrics specific to the Microsoft Foundation Classes 2.0. MFC refers to concepts, architecture and APIs common to all versions of the Microsoft
Foundation Classes.

2A Preview of Microsoft C/C++ 7 and the Microsoft Foundation Classes for Windows, Microsoft Systems Journal, March/April 1992,
Richard Hale Shaw.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 2

Windows operating system. The class hierarchy, as well as the functionality it encapsulates, has
been designed for scalability. Applications written for MFC 1.0 are compatible with MFC 2.0.

MFC applications written for 16 bits using Visual C++ for Windows 3.1 can be recompiled with
very minor1 changes with the Microsoft Visual C++ Development System, 32-bit Edition version
1.0 to run as a full 32-bit program under Windows NT or Windows 3.1 using Win32s™.

1The modifications required are due to converting any 16-bit specific code in your application. The application framework code does not rely on

16-bit or 32-bit implementation details.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 3

This paper provides a technical description of the major features of the Microsoft Foundation
Classes version 2.0. MFC 2.0 is integrated with the Microsoft Visual C++Ô Development System,
32-bit Edition version 1.0 and, in particular, with App Studio, ClassWizard and AppWizard. Many
features of MFC 2.0 are made simpler, less error-prone and more streamlined by using these tools
and the Visual C++ integrated development system. The application framework, however, does not
require any of the tools; all of the features are accessible to users choosing not to take advantage of
the entire family of tools.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 4

Distinguished Benefits

· C++ Windows API: MFC 1.0 introduced a standard application framework interface for
programmers using C++ to develop applications for Windows. MFC 2.0 continues this standard.
MFC 1.0 applications need only be recompiled to begin taking advantage of MFC 2.0 features.1

MFC follows a simple set of conventions that leverage the Windows API; those already
familiar with the Windows API are able to look at MFC code and have a clear understanding of
the concepts involved. To those that are new to Windows-based programming, this leveraging
of the Windows API helps programmers take advantage of the many sources of information
available for learning the concepts behind Windows. For example, sample code and concepts
from Charles Petzold’s Programming Windows can be easily translated to the MFC API. In
addition to being able to reuse concepts, MFC lets you easily reuse low-level C code in MFC
applications because of these conventions.

MFC provides a comprehensive object-oriented encapsulation of most Windows API
functions. Its classes provide support for application start-up, window creation, multiple
document interface windows, menus, dialog boxes, controls, list boxes, graphical primitives and
so forth.

· High-level Abstractions: Many users commented that MFC 1.0 did not contain
abstractions that make it easier to write Windows-based applications.2 MFC 2.0
addresses this by providing high-level abstractions that let programmers concentrate
on the real task of the application being written, rather than on mundane Windows-
based tasks such as implementing a toolbar. MFC 2.0 provides classes that
encapsulate thousands of lines of robust and optimized Windows C++ code. For
example, the Print Preview feature, which requires no additional code on the
programmer’s part, consists of more than 2,000 lines of MFC 2.0 framework code.
A programmer wishing to add a toolbar to an application needs to add less than 10
lines of code calling three APIs to exploit more than 1500 lines of MFC 2.0
framework code.

· Canned Functionality: MFC 2.0 includes a large amount of prebuilt, canned
functionality. The primary benefit of an application framework is the use of
professional code written by experienced developers. The C++ programming
language, using inheritance, encapsulation and polymorphism, makes it much easier

1MFC 1.0 consisted of approximately 1,800 APIs (MFC 2.0 is nearly 3,000 APIs), and of those only about 20 changed in a manner that would
result in a compile time error. A detailed techical note, TN 19, describes the required modifcations.

2Some considered MFC 1.0 to be less abstract than Borland’s OWL. A comparison of the class hierarchies shows the two application
frameworks have substantially similar structure. An analysis of the APIs demonstrates that both class libraries contained a large number of
simple wrapper functions. MFC 1.0 contained significant abstraction in the areas of graphics and OLE. OWL, for example, contained no
abstraction above the Windows API for graphical output, which means that all graphic calls were written as calls to C/SDK functions. For more
details see Sizing Up Application Frameworks and Class Libraries, Dr. Dobb’s Journal, October 1992.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 5

to take advantage of reusable components. MFC 2.0 leverages these features of C++
to provide a body of expertly written, and easily customizable, Windows-based
functionality. For example, the standard MFC 2.0 implementation of the File Open
command automatically handles all the steps necessary to prompt the user, open a
file, read the data, create a window, draw the contents and so on. Programmers only
need to provide an implementation of application-specific file I/O and drawing code,
and MFC 2.0 does the rest. Perhaps the most important part of MFC 2.0’s prebuilt
functionality is that it represents an evolved and standard implementation of the
recommended techniques for solving common Windows-based programming
problems.

· Small and Fast Executables: Research shows that the one of the most important
concerns of Windows developers is the need for small and fast executables. Because
MFC 1.0 was modeled so closely after the Windows API, the size of an MFC 1.0 C+
+ application was only slightly larger than its equivalent C/SDK application. MFC
2.0 is still the smallest and fastest application framework available for Windows.
MFC 2.0 applications are only slightly larger than MFC 1.0 applications (if you
recompile MFC 1.0 code and use MFC 2.0 libraries). If an application uses the
high-level features and canned functionality of MFC 2.0, it is comparable in size to
any other implementation of those same features.

MFC 2.0 Components

MFC 2.0 encompasses most of the functionality available through the Windows API. Since the
nearly 60,000 lines of standard C++ source code for the application framework are
included with the product, developers can use the framework in its original form or
fully customize it for their own purposes. This source code serves as an example of
robust and professional C++ code for Windows. In addition, programmers are able
to use this code to learn new implementation techniques and look “under the hood”
of MFC. Consistent naming conventions and coding style, along with standalone
documentation, make the learning curve minimal. A tutorial is included that steps
programmers through development of a substantial C++/MFC program for Windows
that incorporates most application framework features. In addition, more than 20
complete sample applications are included that demonstrate the most common uses
(and many advanced uses) of the framework.

The application framework divides logically into four components: general-purpose classes,
Windows API classes, application architecture classes and high-level abstractions. General-
purpose classes assist the programmer with the lower-level coding tasks such as file
manipulation, string processing and building block data structures. Windows API classes
provide developers with a complete object-oriented implementation of the GUI portions of the
Windows API. The general-purpose and Windows classes were present in MFC 1.0, and have
been enhanced for MFC 2.0. A complete class hierarchy diagram is included in this document.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 6

MFC 2.0 introduces application architecture and high-level abstractions. The application
architecture classes provide core implementations that are common among standard Windows-
based applications, such as documents and views, printing and command processing. The high-
level abstractions give programmers optimized and reusable building blocks to speed the
development of sophisticated applications. The following sections explore each of these areas in
more detail.

Architecture Classes
A key benefit of an application framework is that it not only provides a large body of prebuilt
functionality, but offers an architecture in which to add your own functionality. When you need
to implement a feature in your application, an elegant architecture provides you with a logical
and obvious location to add your application-specific code. For example, when implementing
the File Save command, the application framework should have an obvious technique (a member
function, a hook, etc.) to add this functionality. It is not enough, however, to point programmers
to the right place, since there is often no single right place, or the application framework could
not foresee the exact situation. MFC 2.0 addresses these issues with a group of tightly integrated
classes collectively known as the application architecture classes. These classes provide support
for the important areas common to many parts of your application such as commands,
documents, views, printing, Online help and dialog processing.

Commands
Menu items, keyboard accelerators and toolbar buttons are the most common sources of
commands in an application. A command is an instruction to your program to perform a
certain action. Unlike a procedure or function call, a command is a message that is
routed to various command targets that may carry out the instruction. Command targets
are objects derived from the CCmdTarget class, and include documents, views, windows
and the application itself.

The command architecture ensures that any user-interface action, such as clicking a toolbar
button or selecting a menu item, will route the command to the appropriate handler.
Command routing can also be used to update the visual state of menu items or toolbar
buttons. For example, the Edit Cut command might have both a menu item and a toolbar
button that can be enabled or disabled. Using the command architecture, it is easy to
maintain the visual enabled/disabled state of both the menu item and the toolbar button
with a single line of code in a single location.

Another integral part of the MFC architecture is message maps, which were introduced in
MFC 1.0 and have been extended in MFC 2.0. A message map provides a typesafe
mechanism for directing any windows message, control notification or command to a C+
+ member function in the appropriate class. Each command target has a message map,
and it contains entries that map each command ID defined in App Studio to a C++
member function. Since there can be a large number of commands (as well as Windows
messages and notifications) handled by each command target, ClassWizard is usually
invoked to manage the creation and maintenance of message maps and message handler
functions. ClassWizard can be invoked from either App Studio or the Visual
WorkBench.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 7

Documents and Views
The document/view architecture of MFC 2.0 is the basis for managing the storage and
display of application-specific data. The CDocument class provides support for managing
your application’s data, and an application will typically derive a new class from
CDocument for each document type. A CDocument class will add member variables and
member functions that allow you to manage application-specific data. The key feature of a
document class is its ability to save a document object to a file for later use. The
programmer’s responsibility is to override the serialize member function, which saves and
loads application-specific data to and from storage. By implementing this function, MFC
2.0 automatically supports high-level commands such as File New, File Save, File Save As
and File Open. MFC 2.0 does all the work of displaying a dialog to gather information
from the user and managing the disk file. Although most documents are typically
associated with disk files, the CDocument architecture is flexible enough to allow
manipulation of data stored in other ways, such as in a database file, or to allow data
manipulation of data without any kind of stored representation.

Each document in a running application is attached to one or more views on that
document. Views control the graphical display of your application’s data on the screen.
Programmers will typically derive a class from the MFC 2.0 CView class, which is itself
derived from CWnd, and then implement the display code. A view represents the main
area of a window on the screen, and is a simple child window that you can manipulate
with CWnd member functions. This usually involves implementation of the OnDraw
member function and writing the code that displays the currently visible data to the user.
The OnDraw function replaces the low-level OnPaint handler of MFC 1.0 with a high-
level abstraction. After implementing OnDraw, your program automatically supports
printing and Print Preview. The CView-derived class is usually the best place to handle
most of the commands and window messages that graphically manipulate the data. To
support high throughput and fast updates, there are a number of APIs that enable
optimization of the drawing process to support most professional applications. It is also
easy to have many views on the same document, and each view can be a different
CView-derived class. For example, a splitter window will have one view for each pane.

To coordinate documents and views, MFC 2.0 uses the helper class CDocTemplate. This
class orchestrates the creation of documents, views and frame windows in response to
user input. One document template object is created for each document type, and is the
glue that connects the document and view types. The application object maintains the
document templates. Two MFC 2.0 document template classes are supplied: one for
Multiple Document Interface (MDI) and one for Single Document Interface (SDI). The
significant differences between an MDI and SDI user-interface model are encapsulated in
the document template and frame window classes.

Printing
By leveraging the document/view architecture, MFC 2.0 is able to provide an application
with device-independent printing. This means that the same code written for OnDraw in the
CView-derived class can be used to draw on the screen and printer. When the user asks to

- more -

Microsoft Foundation Classes 2.0 White Paper Page 8

print a document using the standard File Print command, MFC 2.0 calls the OnDraw
member function with a special device context that is aware of the current printer and knows
how to translate your screen display into appropriate printed output. MFC 2.0 also provides
support for all the standard printing user-interface dialogs. Full-featured Print Preview is
implemented using the printing architecture.
Dialog Data Exchange and Validation (DDX/DDV)
Through a new capability known as dialog data exchange (DDX), MFC 2.0 provides an
easy way to initialize the controls in a dialog box and gather input from the user. An
associated mechanism known as dialog data validation (DDV) provides validation of the
dialog data. The heart of the DDX/DDV feature is the DoDataExchange member
function. This function is called automatically by the application framework. Consider
the following short example in Figure 1:

void CMyDialog::DoDataExchange(CDataExchange* pDX)

{
DDX_Check(pDX, IDC_CHECKBOX, m_bUser);
DDX_Text(pDX, IDC_EDIT, m_strName);
DDV_MaxChars(pDX, IDC_EDIT, m_strName, 20);

}
Figure 1

This example in Figure 1 shows a data exchange function for a checkbox with a control
ID of IDC_CHECKBOX. The state of the checkbox (checked or not) will be stored in a
BOOL member variable called m_bUser. This variable is a member of the CMyDialog
class, so the dialog is fully encapsulated and easily reused in other parts of the
application. The application framework automatically calls DoDataExchange, and
DDX_Check transfers the data between the control and the member variable. The
example in Figure 1 also shows a data exchange entry and a validation entry for a string
variable. The DDX_Text function is automatically called to transfer data between a
CString member variable called m_strName and the edit control in the dialog box. The
DDV_MaxChars function is called to validate that the data entered by the user into the
edit control does not exceed 20 characters. If the entry is invalid, the application
framework automatically displays a message box informing the user of the error and
returns the input focus to the edit control.

Because there are so many possibilities for exchange and validation (e.g., the use of
custom controls or application-specific validation schemes), Microsoft made the
DDX/DDV architecture fully extensible. You can supply your own DDX and DDV
functions and integrate them seamlessly with MFC 2.0. The DDX/DDV architecture
supports data types and Windows controls and includes a number of prebuilt DDX/DDV
routines. Standard support for data types includes 16-bit integers (signed and unsigned),
32-bit integers (signed and unsigned) and strings (raw and formatted). DDX/DDV
supports all the standard Windows controls, including checkboxes, radio groups, list
boxes and combo boxes. Built-in DDV support is provided for maximum string length
and ranges of integers.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 9

The DDX/DDV architecture is tightly integrated with ClassWizard, which enables you to
define all necessary member variables and DDX/DDV routines without having to write
any code. Of course, ClassWizard is only a tool, and it follows the logical steps you
would normally take by directly editing the source code. ClassWizard, however, is
generally faster than manual file editing and is also less error prone.

Help
Support for online and context-sensitive documentation is essential for most applications.
MFC 2.0 provides an architecture that makes it easy to incorporate the two most common
types of help support in applications for Windows. Help support includes a Help menu
with the standard commands, and provides an architecture for the application framework
to map from command or resource IDs to the various help contexts. Help contexts are
easily created in Visual C++ since every time a user-interface element is created in App
Studio, a help context for that element is automatically created. Help files (.HLP) are
authored using standard authoring tools.

When a user presses the F1 key, MFC 2.0 automatically processes the keystroke as a help
request for the current command target. For example, the CDialog class processes the
help request by invoking WinHelp on the help topic for the currently displayed dialog. If
no help context is defined for the current command target, then the application
framework automatically launches the default help. The CFrameWnd, CMDIFrameWnd
and CDialog classes all provide handler functions for help support. You can add support
to any class that is a command target.

When a user presses SHIFT+F1, MFC 2.0 captures the mouse and changes the cursor
into the standard context-sensitive help cursor (arrow+question mark). With this cursor
displayed, clicking on a
user-interface object tells the application framework to invoke WinHelp with the correct
help context based on the selected object.

MFC 2.0 provides a tool to manage the help context information, which associates user-
interface elements with help contexts. In addition, AppWizard provides much of the
standard WinHelp format file with
pre-written information on all of the standard commands. All that is needed is an editor
capable of editing rich text format (RTF) text, such as Microsoft Word, to add
application-specific information. Therefore, the combination of MFC 2.0, AppWizard
and App Studio works together to provide programmers with most of their application’s
help features automatically.

High-level Abstractions
MFC 1.0 was the cornerstone of a robust framework for building reusable classes, but it did not
provide enough high-level abstractions to reduce programming time. MFC 2.0 addresses this
with a set of classes that supports the most common user-interface idioms and provides
capabilities for taking advantage of other prebuilt functionality. These classes, collectively

- more -

Microsoft Foundation Classes 2.0 White Paper Page 10

called the high-level abstractions, are designed to be used as supplied by MFC 2.0 and can result
in a dramatic reduction in programming time. In a few lines of code, programmers can build a
text processing window that integrates seamlessly with other MDI windows, or change the base
class to turn a view into a scrolling view. In addition to this power, all of these high-level
classes are designed to be easily modified using C++ inheritance.

Form View
One of the most common types of Windows-based applications is form processing. A
form is like a dialog that the user can interact with to fill in edit controls, select options
from listboxes and radio groups, as well as work with other dialog controls. For
example, an order/entry database application would probably use forms to allow
customer service representatives to enter order information.

The problem is that the Windows dialog manager does not support much of what true
form processing applications require, such as scrolling, multiple forms for the same data,
synchronous update and printing. MFC 2.0 enhances this model with the CFormView
class. A CFormView provides a view (a class derived from CView) based on a dialog
resource you edit with App Studio. You can use this view to create form views
containing arbitrary Windows controls. The user can scroll the form view and tab among
controls. The benefit of CFormView over standard dialogs is that CFormView objects
integrate with the entire application framework architecture, so you get automatic support
for command handling and document management. A form view can also be an MDI
child window.

Edit View
A number of MFC 1.0 users requested that MFC 2.0 provide an abstraction that makes it
easy to create a simple text editor. MFC 2.0 responded to that request by introducing the
CEditView class. CEditView is like the low-level CEdit class since it provides the
functionality of the standard Windows edit control. In addition, however, CEditView
supports high-level functionality such as printing, Find and Replace, Cut, Copy, Paste
and Undo, as well as the standard File commands (Open, Save, Save As). Of course,
since CEditView is derived from CView, all of the architectural benefits described above
apply. The sample program discussed later in this document shows the power of the
CEditView; by simply creating a document template that uses CEditView, without even
the need to derive your own view class, an application can have an MDI text editor.
Scrolling View
Most applications can only show a portion of their data files on the screen at a single
time. The CScrollView class, which is another high-level view class derived from
CView, supports views that scroll and views that are automatically scaled to the size of
the frame window that displays them. By deriving from CScrollView, you can add the
ability to scroll or scale to your view class. CScrollView manages window sizes and
mapping mode for graphics, and scrolls automatically in response to user-interface
actions, such as clicking on the scroll bar. It is also possible to specify that you require
all of your data to fit within the frame window, in which case the CScrollView will
stretch or shrink the logical view to fit within the main drawing area of the window.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 11

Splitter Window
In a splitter window, the window can be split into two or more separately scrollable
panes. A splitter control in the window frame next to the scroll bars allows the user to
adjust the relative sizes of the panes. Each pane is a different view on the same
document. This type of user interface is useful, for example, when a user wishes to view
both the beginning and end of a very long document on a single screen.
MFC 2.0 provides the high-level class CSplitterWnd to support this user-interface model.
The CSplitterWnd class also supports the two most common types of splitters: dynamic
and static. With dynamic splitters the user can add or remove arbitrary split panes, while
static splitters have a predefined number of panes. Each of the splitter pane’s views can
be the same class, or each can be a different derived CView class. In all cases, the
application framework automatically manages all aspects of the user interface and
standard commands.
Print Preview
In combination with the printing and document/view architectures, MFC 2.0 supports
print preview functionality. Print Preview shows a reduced image of either one or two
pages of a document as they would appear when printed on the currently selected printer.
The implementation provides the standard user interface for navigating between pages,
toggling between one- and two-page viewing, as well as zooming the display in and out
to different levels of magnification. The ability to support Print Preview is a true
measure of the amount of prebuilt functionality and high-level of abstraction in MFC 2.0.
The Print Preview feature represents several thousand lines of code in the application
framework, but programmers only need to handle the display output code in the OnDraw
member function of class CView and make sure that the File Print Preview menu
command is available — the framework does the rest.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 12

Toolbar
One of the most commonly requested user-interface elements is the toolbar. A toolbar is
a row of buttons represented by bitmaps and optional separators. These bitmap buttons
can behave like push buttons, checkbox buttons or radio group buttons. The MFC 2.0
class CToolBar supports the recommended standard toolbar look and feel. All the
toolbar buttons are normally taken from a single bitmap image, which is edited using
App Studio, and contains one image for each button. One of the key advantages of the
MFC 2.0 CToolBar implementation is that by using commands, the various buttons in
the toolbar can be enabled and disabled in conjunction with any menu items for those
same commands. This is important because toolbar buttons almost always duplicate
menu items, as is recommended in the Windows Application Design Guide. If you
require additional standard Windows controls on the toolbar, such as drop-down
listboxes or edit controls, the CToolBar class can easily support them. In addition,
CToolBar provides programmatic APIs for dynamically changing the buttons on the
toolbar for highly customized user interfaces.
Status Bar
The CStatusBar class implements a row of text output panes, or indicators. The output
panes are commonly used as message lines and status indicators. Examples include the
menu help-message lines that briefly describe the selected menu command and the
indicators for the keyboard states of Num Lock, Scroll Lock and Caps Lock. The
CStatusBar class supports any number of panes and automatically lays them out based on
the width of the contents. Each pane can have a customized style, including 3-D borders,
pop-out text, disabled and stretchy. The MFC 2.0 command architecture supports
automatic menu prompt strings, and when using App Studio to edit menus for MFC 2.0
applications, you can also define the prompt string for the menu item. The standard
status bar code that is output by AppWizard in new applications supports the Windows
Application Design Guide recommendations.
Dialog Bar and Control Bar
The CDialogBar class is like a modeless dialog in that it easily supports any combination
of Windows controls and is created from a dialog template edited by App Studio. Dialog
bars support tabbing among controls and can be aligned to the top, bottom, left or right
edge of the enclosing frame window. The most common example of a dialog bar is the
Print Preview user interface.

CToolBar, CStatusBar and CDialogBar all derive from the common base class
CControlBar. The CControlBar abstraction enables the MFC 2.0 implementation to
reuse code among these classes. CControlBar provides the functionality for automatic
layout within the parent frame window of the derived classes. CControlBar demonstrates
the power of a base class that provides a partial implementation that is completed in a
series of closely related derived classes.

OLE 1.0 Support
MFC 2.0 provides nine classes that support Object Linking and Embedding (OLE) 1.0.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 13

These classes build upon the support in MFC 1.0, making it even easier to build
applications that support OLE.
MFC support for OLE includes classes for implementing a client, implementing a server
and several helper classes, as well as most of the standard dialogs and menu items. The
main benefit of the OLE support is its integration with the document/view and command
architectures, which smoothes the transition to an OLE application. Checking the OLE
Client support option in AppWizard provides an excellent start with OLE because it
automatically enables an application to act as an OLE client. In the future, MFC will
provide support for OLE 2.0, so using the OLE 1.0 support today will make the
transition to the new OLE 2.0 paradigm much easier.
Windows API Classes

MFC 2.0 provides classes that simplify programming for Windows while at the same time
permitting application developers to leverage both existing Windows code and programming
experience. For the inexperienced programmer of Windows-based applications, the Microsoft
Foundation Classes simplify programming for Windows by providing canned functionality for
many standard Windows-based programming idioms. These classes have evolved from the
MFC 1.0 implementation, but backward compatibility has been maintained. Developers with
MFC 1.0 applications need only recompile their application to begin using MFC 2.0. A brief
technical note provided with Visual C++ describes the few minor changes that must be made to
the application’s source code.

Standard Application Support
MFC encapsulates the standard application structure in an easily customizable application
object. In addition to standard initialization, message processing and termination, the
CWinApp class supports idle time processing of user-defined operations. The scope of
the CWinApp class has been expanded in
MFC 2.0 to include support for profile settings, context-sensitive help, File Manager drag
and drop, shell registration for launching the application from File Manager and other
user-interface features. The CWinApp class frees the programmer from the details of the
WinMain, LibMain and WEP routines, and provides a standard abstraction across
Windows platforms.
Frame Windows
Along with an application object, most programs use a standard frame window. MFC
2.0 provides support for both the single-document interface and the multiple document-
interface (MDI). The CMDIFrameWnd and CMDIChildWnd structure of MFC 1.0 has
been maintained. In MFC 2.0, however, many of the common MDI commands and user-
interface functionality, such as changing the menu bar that is based on the active
window, are now provided as canned functionality by the framework. In addition, error-
prone areas of Windows-based programming, such as keyboard accelerators and
implementation of default behavior, are handled in a seamless manner by the application
framework. Frame windows are managed by the document template class in applications
that take advantage of the document/view architecture. A view is contained within a
frame window (usually a CFrameWnd or a CMDIChildWnd).
Controls
Controls are windows that are drawn in the client area of frame windows, or as controls

- more -

Microsoft Foundation Classes 2.0 White Paper Page 14

in a dialog box. MFC 2.0 provides classes for all of the standard controls: static text,
buttons, edit control, list boxes, combo boxes, scroll bars, handwriting controls and user-
defined child windows. MFC 2.0 makes it easy to derive your own child windows
(including deriving from the standard Windows controls) and to customize their behavior
using C++ inheritance and message maps. MFC 2.0 has also enhanced the
CBitmapButton class introduced in MFC 1.0.
Graphics/GDI
The MFC 1.0 device context class, CDC, provided a simple Windows API wrapper.
MFC 2.0 extends the DCC implementation to allow polymorphic implementations of
device context output functions. This enables a virtual display context that allows MFC
2.0 applications to use the same drawing code to send output to the screen, a printer, a
metafile or a Print Preview view. MFC 2.0 provides a complete set of classes for
drawing graphical objects and managing device contexts. These graphical object classes
include all of the standard Windows objects, including pens, brushes, bitmaps, fonts,
regions and palettes. Several device context classes are also supplied to make the
handling of common idioms (such as window repainting) simple and less error prone.
The graphical objects are designed to automatically free system resources when they are
no longer needed, which simplifies common object-ownership problems and enables an
application to run safely in a resource-constrained environment.
Dialogs
MFC 2.0 makes it even easier to use dialogs within an application. The application
framework manages many of the intricate Windows operating system-oriented details of
dialogs automatically, including the handling of dialog-specific messages. Dialogs are
handled with the CDialog class, which supports both modal and modeless dialogs.
Programmers simply derive from a dialog class and customize it by overriding member
functions and message handlers. This customization model is exactly like every other
CWnd-derived class, which provides good programming consistency.
General-purpose Classes

The general-purpose classes provide programmers with a wide range of functionality designed to
take advantage of the powerful features of C++. These classes are available for programmers to
develop the non-graphical portion of the application. In many respects, the general-purpose
classes, together with the Windows API classes, are the building blocks for the entire application
framework and provide fundamental functionality to those classes as well as programmer-
defined classes.

Run-time Object-type Information
Most MFC classes are derived, either directly or indirectly, from the class CObject,
which provides the most basic object-oriented features of the framework. CObject
supports dynamic type checking, which allows the type of an object to be queried at run
time. This feature provides programmers with a type-safe means to cast down a pointer
from a base class to a derived class. Without dynamic type checking, this cast can be a
source of errors and can break the type safety of C++. Most programmers find this
feature useful, but since it incurs a very small runtime overhead (approximately 24 bytes
per class) its use is optional.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 15

Object Persistence
Persistence is the ability of any object to save its state to a persistent storage medium
such as a disk. For example, if a collection is made persistent, then all members of that
collection are made persistent. The CArchive class is used to support object persistence
and allows type-safe retrieval of object data. To use persistence, a class implementor
must override the Serialize member function, call the base class’s Serialize function, and
then implement the data storage routines for member data that is specific to a derived
class. Entire networks of objects, with references to other objects, including both
multiple and circular references, can be saved with a single line of code. As with
dynamic type checking, the use of persistence is optional.
Data Structures
The efficiency of standard data structures is an area in which MFC 2.0 excels. The
provided collection classes, a standard component of any C++ class library, are well-
tested, well-coded and highly reusable. The MFC collection classes include double-
linked list classes, map (dictionary) classes and dynamic (growable) array classes. All of
these have been implemented using the proposed ANSI template syntax for type-safe
usage. For example, the list class is supplied with variants supporting UINT, BYTE,
WORD, DWORD, void*, CObject* and CString elements. The map and array classes
have similar sets of variants. In all, MFC 2.0 supplies 17 collection classes. For users
who wish to take advantage of the template syntax to generate a type-safe variant of a
supplied implementation (or write their own template), a template expansion tool written
using MFC 2.0 is provided as a sample application.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 16

Strings
The CString class supports a very fast string implementation that is compatible with
standard C “char*” pointers. This class allows strings to be manipulated with syntax
similar to the Basic language that includes concatenation operators and functions such as
Mid, Left and Right. CString also provides its own memory management, freeing the
programmer from allocating and freeing string memory.
Files
MFC 2.0 offers three file classes: CFile and its two derived classes, CStdioFile and
CMemFile. CFile supports low-level binary file I/O (read, write, seek). CStdioFile
provides buffered file I/O similar to the standard I/O run-time libraries. CMemFile
supports file semantics in RAM-resident files for managing clipboard data as well as
other forms of interapplication communication. The polymorphism provided by the
three file classes (CFile, CStdioFile and CMemFile) allows the same code to be used for
sending data to a variety of destinations using the CFile interface. MFC 2.0 has added
support for reading and writing huge data blocks greater than 64K.
Time and Date
In addition to the standard time and date functions, a class is provided to conveniently
support time and date arithmetic using overloaded operators. Binary time values are
automatically formatted into human readable form.
Exception Handling
MFC 2.0 supports a robust exception-handling mechanism that is upwardly compatible
with the proposed ANSI try/throw/catch standard. The CException class (including
several derived classes) provides exception-specific support for memory, archiving,
filing, resource and other exceptions. Rather than using return codes that are often
overlooked and result in inefficient code, the exception syntax is a clean and efficient
mechanism for handling fatal conditions.
Debugging and Diagnostic Support

An area overlooked by many class libraries is the inclusion of sophisticated diagnostic and
debugging facilities. Incorporated directly into the fabric of MFC 2.0 is a backbone of
diagnostic code that is supported in the debug version of the framework. Applications written
with MFC 2.0 and compiled for debugging can be up to twice as large as their non-debug
counterparts — an indication of the extensive diagnostic support within the application
framework.

Programmers can add debug code anywhere in an application that will print out all currently
allocated heap objects. This capability is invaluable for the detection of serious memory leaks
that are often impossible to track by other means. A memory leak is a slow depletion of system
resources that can go undetected for several days until all resources are consumed. For all heap-
allocated objects, a record is kept of the size, source file and line number of the allocation. After
a debug version of an MFC 2.0 application terminates, the application framework automatically
displays all heap objects the programmer failed to free.

Other debug support includes functions that are able to validate any pointer and determine if it

- more -

Microsoft Foundation Classes 2.0 White Paper Page 17

refers to a genuine C++ CObject-derived object. Other facilities provided by the framework are
run-time assertions and class invariants, which were popularized by the Eiffel programming
language. Every class in MFC 2.0 implements a member function that checks the current state
of the object and causes a debug assert if the object is not in a proper state. Library member
functions validate parameters to functions in the debug version of the framework.

There are more than 2,300 ASSERT statements within the implementation of MFC 2.0, each of
which checks the condition of the internal state of a class or parameters passed into an API. If a
programmer erroneously causes the application framework to enter an unpredictable state, the
application will immediately break into the debugger (if it is running) or an alerting message box
will be displayed. ASSERT statements catch errors much earlier and can save hours of
development time. All major Microsoft applications use assertion statements extensively. In the
release (non-debug) version of an MFC application, ASSERT statements are not executed and
generate no code. They are designed for testing purposes only and thus incur no cost to the
application’s end users. The ASSERT mechanism is provided for users of MFC as well, and
programmers are encouraged to take advantage of it within their own code.

MFC 2.0 also provides TRACE statements, which are formatted information messages. As with
ASSERT statements, TRACE statements are executed only in the debug version of an
application. The TRACE statements in the application framework display possible misuse of a
feature, low memory conditions, rarely executed boundary conditions, and full message and
command tracing. Since the output can be verbose (there are nearly 300 TRACE statements in
MFC 2.0), it is easy to select which categories of messages are reported using the
TRACER.EXE application. For example, if you are only interested in information about OLE,
you can filter out all the other TRACE output. The TRACE facility can also be used by
programmers within their own code.

Professional Windows-based Development
MFC 2.0 takes into account the needs of engineers developing large-scale professional
applications for Windows.

Much effort has gone into optimizing the code size of executables and keeping them as small as
possible. A combination of the advanced features of the Microsoft C++ compiler/linker (such as
function-level linking) and the module granularity of MFC 2.0 reduce the size of MFC
applications.

The Microsoft Foundation Classes use C++ idioms in the commonly accepted manner and do not
overlook advanced issues such as copy construction, assignment operators and correct object
destruction. These issues are a common source of errors in user code, and can be difficult to
track down. MFC 2.0 code serves as an example of both professional C++ code and professional
Windows code.

Sample Program: MultiPad

In the following pages, a sample application using MFC 2.0 is demonstrated. The purpose is to

- more -

Microsoft Foundation Classes 2.0 White Paper Page 18

show the power and simplicity of the framework’s architecture and implementation. The
application is a simple MDI text editor, similar to the MultiPad sample application shipped with
the Windows SDK. MFC 1.0 also supplied a similar sample application.

This example is not designed to cover every aspect of MFC 2.0 nor is it designed to make you an
expert in all the features of MFC 2.0. The intent is to illustrate the powers of the MFC 2.0
architecture, and to show how useful the high-level abstractions can be for quickly implementing
large amounts of functionality. This example originated as an AppWizard-created application,
but has been merged into a single source file in order to serve better as an example.

1. // MultiPad : Simple MDI text editor written using MFC 2.0

2. ///
3. // Interface

4. #include <afxwin.h> // MFC core and standard components
5. #include <afxext.h> // MFC high-level abstractions
6. #include "resource.h" // Resource symbols

7. class CMultiPadApp : public CWinApp
8. {
9. virtual BOOL InitInstance();

10. afx_msg void OnAppAbout();
11. DECLARE_MESSAGE_MAP()
12. };

13. class CMainFrame : public CMDIFrameWnd
14. {
15. CStatusBar m_StatusBar;
16. CToolBar m_ToolBar;

17. afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
18. DECLARE_MESSAGE_MAP()
19. DECLARE_DYNCREATE(CMainFrame)
20. };

21. class CPadDoc : public CDocument
22. {
23. virtual void Serialize(CArchive& ar);

24. DECLARE_DYNCREATE(CPadDoc)
25. };

26. ///
27. // Implementation

28. CMultiPadApp NEAR theApp; // define a single application object

29. BEGIN_MESSAGE_MAP(CMultiPadApp, CWinApp)
30. ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
31. ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew) // file commands...
32. ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
33. ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
34. END_MESSAGE_MAP()

35. BOOL CMultiPadApp::InitInstance()
36. {
37. SetDialogBkColor();
38. LoadStdProfileSettings();

39. AddDocTemplate(new CMultiDocTemplate(IDR_TEXTTYPE,
40. RUN-TIME_CLASS(CPadDoc), RUN-TIME_CLASS(CMDIChildWnd),
41. RUN-TIME_CLASS(CEditView)));

- more -

Microsoft Foundation Classes 2.0 White Paper Page 19

42. m_pMainWnd = new CMainFrame;
43. ((CFrameWnd*)m_pMainWnd)->LoadFrame(IDR_MAINFRAME);

44. m_pMainWnd->DragAcceptFiles();
45. EnableShellOpen();
46. RegisterShellFileTypes();

47. m_pMainWnd->ShowWindow(m_nCmdShow);
48. if (m_lpCmdLine[0] == 0)
49. OnFileNew();
50. else
51. OpenDocumentFile(m_lpCmdLine);
52. return TRUE;
53. }

54. void CMultiPadApp::OnAppAbout()
55. {
56. CDialog about(IDD_ABOUTBOX)
57. about.DoModal();
58. }

59. IMPLEMENT_DYNCREATE(CMainFrame, CMDIFrameWnd)
60. BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
61. ON_WM_CREATE()
62. END_MESSAGE_MAP()

63. static UINT buttons[] =
64. {
65. ID_FILE_NEW, ID_FILE_OPEN, ID_FILE_SAVE, ID_SEPARATOR,
66. ID_EDIT_CUT, ID_EDIT_COPY, ID_EDIT_PASTE, ID_SEPARATOR,
67. ID_FILE_PRINT, ID_APP_ABOUT
68. };

69. static UINT indicators[] =
70. {
71. ID_SEPARATOR, ID_INDICATOR_CAPS, ID_INDICATOR_NUM, ID_INDICATOR_SCRL
72. };

73. int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
74. {
75. CMDIFrameWnd::OnCreate(lpCreateStruct);
76. return ((m_ToolBar.Create(this) &&
77. m_ToolBar.LoadBitmap(IDR_MAINFRAME) &&
78. m_ToolBar.SetButtons(buttons, sizeof(buttons)/sizeof(UINT)) &&
79. m_StatusBar.Create(this) &&
80. m_StatusBar.SetIndicators(indicators, sizeof(indicators)/sizeof(UINT)))
81. ? 0 : -1);
82. }

83. IMPLEMENT_DYNCREATE(CPadDoc, CDocument)

84. void CPadDoc::Serialize(CArchive& ar)
85. {
86. ((CEditView*)m_viewList.GetHead())->SerializeRaw(ar);
87. }

Figure 2

The following is a description of the major program elements of the MultiPad application.

Lines 1-6:

These include the standard MFC 2.0 header files. The file RESOURCE.H, which isn’t
shown here, contains the symbol definitions for the commands and user-interface elements; it is

- more -

Microsoft Foundation Classes 2.0 White Paper Page 20

usually edited only by App Studio.
Lines 7-12:

Every MFC application must declare a class derived from CWinApp. The CWinApp class
encapsulates much of the mundane work normally associated with getting an application started
and running. There are overridable member functions for initialization, message-loop
processing, idle-loop processing, as well as support for File Manager drag and drop, Shell
registration, and most recently used file list management. In this example, we override
InitInstance to perform some one-time initialization. Since a CWinApp-derived class is a
command target, there is also a message map for this class. The OnAppAbout command handler
is used for the About box. Lines 10 and 11 are usually maintained by ClassWizard, so this is
code you do not normally write manually.
Lines 13-20:

CMainFrame is a class derived from the MFC 2.0 class CMDIFrameWnd, which provides
support for MDI window management. The CMainFrame class adds two member variables for
the toolbar and status bar, each of which is one of MFC 2.0’s high-level abstractions. Lines 17-
19 are usually maintained by ClassWizard and indicate that the class has a message map that will
handle the OnCreate message (WM_CREATE). The DECLARE_DYNAMIC macro allows the
application framework to dynamically create the frame window.
Lines 21-25:

MultiPad manages documents that are merely standard text files. The CPadDoc class is
needed to implement the Serialize overridable member function. Serialize is called
automatically by the application framework in response to File Open, File Save and File SaveAs
commands.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 21

Line 28:
By declaring a CMultiPadApp class object, the constructor for that object will be invoked at

program start-up. Every MFC application must define a single application object that replaces
the normal WinMain functionality. When the program starts, MFC 2.0 automatically calls the
initialization functions, and if they are successful, the framework’s message loop will be run.
When the user executes the File Exit command, the application terminates.
Lines 29-34:

These lines implement the message map for the CMultiPadApp. Each one is a command
handler and each handles one of MFC 2.0’s standard commands. If you are familiar with MFC
1.0, you will notice that the message-map structure is unchanged. Further down in the code is a
definition for the OnAppAbout member function, which is called when the user executes the
Help About command. The three other commands are all implemented using the canned
implementation, which is why there are references to the application framework class CWinApp.
These message map entries implement the File New, File Open and File Print Setup commands.
Although these entries could automatically be supplied for all applications, MFC 2.0 requires
that you pay only for functionality that you use. For example, if an application does not support
printing, then MFC 2.0 does not force the application to link in all of its printing code. MFC 2.0
follows this swap-tuning practice frequently. Rather than having large executables, MFC 2.0
allows programmers to add a single line of code that enables the canned library implementation.
Lines 35-36:

The InitInstance function is actually the bulk of the code that needs to be written to
implement the application. This function is called automatically by MFC 2.0 when the
application starts.
Line 37:

MFC 1.0 supported new look gray-colored dialog boxes by default. However, a number of
users commented that they would prefer a single function that lets them choose the background
color of dialogs. MFC 2.0 therefore added the SetDialogBkColor function for that purpose. The
default arguments, which are not shown, set the dialog background and text colors to the MFC
1.0 values.
Line 38:

The LoadStdProfileSettings function loads the user’s preferences from the MULTIPAD.INI
file stored in the user’s Windows directory, that is the preferred mechanism for saving profile
settings. If an application has other settings which should be restored, then InitInstance is the
best place to restore them, along with the standard
MFC 2.0 settings. The standard profile settings include the most recently used file list in the File
menu, and some print preview information. This API is an example of how MFC 2.0 provides
prebuilt functionality that a program does not need to pay for if it does not use the feature. If an
application does not need the profile settings, then omitting this line will not require the
application to maintain an .INI file, and leaves the MFC 2.0 code that implements the feature out
of the final executable.
Lines 39-41:

In order to use the document/view architecture, it is necessary to create a document template
for each document type, which is done by calling the AddDocTemplate API. The document
template orchestrates the creation of the document, view and frame window. Since this is an

- more -

Microsoft Foundation Classes 2.0 White Paper Page 22

MDI application, the CMultiDocTemplate class is used. Also, since the document template
needs to be used after InitInstance, it is allocated on the heap using the C++ new operator. MFC
2.0 automatically frees the memory associated with the document template. The constructor for
CMultiDocTemplate requires four parameters. The first parameter is the ID of a string resource
that contains several strings, including the default window title, the description of the document
type and the strings needed by the standard file dialog. Each of the other three arguments is a
run-time class, which gives the application framework enough information to create objects of
the given type. The second argument is the
run-time class of the document type, which in this program is CPadDoc. The third argument is
the run-time class of the frame window to be used for this application. Since this is an MDI
application, the CMDIChildWnd class is used directly. The frame window can also be an SDI
frame or it can be any class derived from CFrameWnd. The fourth argument is the name of the
view class. MultiPad requires a view that can draw and edit text, manage the clipboard, and
implement find/replace and printing. MFC 2.0 provides this canned functionality in the high-
level abstraction class CEditView. The programmer only needs to pass the run-time class for
CEditView to the document template and the application will use the built-in MFC 2.0 class with
the document class. For more specialized applications one can supply any CView-derived class
to the document template.
Lines 42-43:

The next step in initializing the application is to create an application window. (The
allocation of the application window was declared previously in lines 13-20). The LoadFrame
API creates the application window and integrates it with the application framework
architecture. For example, the API assigns a help context to the window, and loads the
appropriate icon, accelerator table and menu from the resources in the executable file. The cast
is required because the m_pMainWnd member variable in the CWinApp class is a CWnd pointer
and CMDIFrameWnd is derived from that class. The application framework is flexible in
allowing any window such as a dialog to be the application window.
Lines 44-46:

In order to support the File Manager drag and drop and the File Manager Open and Print
commands, these three lines are required. Adding these three lines enables these features for
applications that require them, and eliminates the need to add a larger amount of code and a
separate registration file (.REG file). In fact, if a document extension is specified when creating
an MFC 2.0 application with AppWizard, these lines are automatically placed in the
application’s InitInstance, as they are in this example.
Lines 47-53:

At this point, the application only needs to process the command line. If a file name is
present on the command line, the OnFileOpen command handler is called directly; otherwise the
OnFileNew handler is called to display a blank “Untitled” window. These functions are
implemented in the application framework. In line 47, the ShowWindow API is called to
display the application window. As with MFC 1.0, any MFC 2.0 API that is implemented as a
direct call to the Windows API, such as ShowWindow, is named the same as the corresponding
Windows API. Returning TRUE from InitInstance indicates that the initialization was
successful.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 23

Lines 54-58:
The OnAppAbout command handler demonstrates how easy it is to bring up a modal dialog

in MFC 2.0. The constructor for CDialog requires the ID of the dialog resource, which is
created and edited with App Studio. The DoModal call creates the dialog and processes
messages until the end user clicks OK.
Lines 59-62:

These lines create the message map for the application window. Although MFC 1.0 message
maps were edited by hand, MFC 2.0 includes ClassWizard, which maintains message maps
automatically. Of course, you are still free to use a standard text editor to manage message
maps, as the syntax is unchanged.
Lines 63-72:

The toolbar and status bar both require command IDs for the commands that these user-
interface abstractions handle. The commands are defined in a simple array of integers. For a
toolbar, the array implements one-to-one mapping based on the positions of the button tiles in
the toolbar bitmap, which is edited within App Studio. For status bars, the array implements a
one-to-one mapping based on the indicator fields of the status bar. Separator entries in either
array indicate buttons or indicators that will be skipped.
Lines 73-82:

The OnCreate message handler is called in response to the LoadFrame call. OnCreate is the
first message a window receives, and is usually the best place to implement one-time
initialization of a window. Notice that instead of having to parse wParam and lParam, as is
required in C code, the message was mapped directly to a C++ member function. The OnCreate
interface provides type-safety and recompile-only portability to Windows NT and Win32sÔ,
where a number of messages have changed their wParam and lParam encoding. For the
application window, the toolbar and status bar need to be created. First, the base class OnCreate
function is called, which is an MFC convention, and then several CToolBar member functions
are called. Next, the toolbar is created, the bitmap resource is loaded from the executable, and
the buttons are hooked to the commands using the array defined above. This example shows the
buttons defined at program initialization, but it is just as easy to alter the buttons
programmatically for a fully end-user customizable user interface. The status bar is handled in
two steps: First it is created, and then the indicators are set using the commands in the array
defined above. Should any of these calls fail (for example, if there are not enough system
resources to load the bitmap) then the OnCreate function will fail and the application will not
run.
Line 83:

The IMPLEMENT_DYNCREATE macro initializes the data structure required by the run-
time class mechanism. There will be such a line for each class that maintains run-time type
information.
Lines 84-87:

In order to read and write the text data of a CPadDoc document, it is necessary to override
the Serialize member function. The CEditView class provides an interface that reads and writes
the data in the view, so calling the view’s Serialize member function is all that is required. As
previously mentioned, a document can have any number of views attached to it, which is why
there is a reference to the list of views, m_viewList. This line simply gets the first view, which

- more -

Microsoft Foundation Classes 2.0 White Paper Page 24

is known to be a CEditView, and calls the CEditView API that reads and writes the text of the
file in a raw (unmodified) format.
A screen image of the running application is shown in Figure 3. Although it shows a number of
useful features, it is difficult to capture them all on one screen. MFC 2.0 MultiPad implements
the following menu commands: File (New, Open, Close, Save, SaveAs, Print, Print Setup, Exit
and four most recently opened files); Edit (Undo, Cut, Copy, Paste, Delete, Find, Find Next,
Replace, Select All, View) (toolbar and status bar); Window (Cascade, Tile, Arrange Icons and
an MDI child window list); and Help (About). There are toolbar buttons for File New, File
Open, File Save, Edit Cut, Edit Copy, Edit Paste, File Print and Help About. The status bar has
indicators for the prompt string of the currently selected menu item (or Ready if no menu is
selected), Num Lock, Caps Lock and Scroll Lock. MultiPad supports opening files from the File
Manager by double clicking on any .TXT file. From the File Manager, any .TXT file can be
dragged onto MultiPad and it will automatically be opened. The application also follows
standard MDI window management and has the appropriate title bars and minimized/maximized
behavior.

Sample screen for MultiPad: Note the MDI windows, toolbar, status bar (with prompt string), standard Search/Replace

dialog and standard menu structure.

Figure 3

Looking at this example program, which contains only 87 lines, there are a number of key points
to notice beyond the features.

First, the application is standard C++ and makes use of the standard Windows APIs where
appropriate. The code contains no language extensions and can compile with any standard C++
compiler for Windows. This example application only required one call to a Windows API that
is wrapped by an MFC 2.0 class (this is the same function as in MFC 1.0). In general, MFC 2.0
will have fewer calls to these wrapped functions because of the higher level of abstraction. On
the other hand, when a programmer requires direct access to the Windows API, MFC 2.0 is
designed to facilitate that as well.

Several times in this example we took advantage of the canned functionality within the MFC 2.0
application framework. The functionality is a robust, small and fast implementation of standard
programming paradigms for Windows. These features exist for two reasons: First, they save
programmers time and effort; second, they show programmers the standard way of
implementing a Windows user-interface idiom. For example, the OnFileOpen command handler
prompts the user with a standard File Open dialog, selects files of the appropriate type, validates
the existence of the file, opens the file, reads the data into the document object, creates a frame
window, sets the title of the window using the Windows standard, and resets the menu bar as
appropriate for the particular document. If programmers need to customize any of this

- more -

Microsoft Foundation Classes 2.0 White Paper Page 25

functionality, they only need to override a function. Since MFC 2.0 source code is included and
serves as an example of a correct implementation, programmers have all the information needed
to implement any user-interface paradigm required by an application.

MFC 1.0 was often categorized as being a thin veneer or a literal wrapping of the Windows API.
This was true, because the goals of MFC 1.0 were such that providing something close to the
Windows API would help get C and SDK programmers into the world of C++. As it turns out,
most MFC applications took fewer lines of code to implement an application than other
application frameworks.1 For MFC 2.0, the AFX group set out to help more programmers write
programs for Windows in C++ by providing high-level abstractions that encapsulate a large
amount of functionality with a few lines of code.

An important design goal of MFC 1.0 was that applications written with MFC 1.0 be as small
and fast as those written with C and the SDK. MFC 1.0 received much praise for the small size
of the executables compared to all other application frameworks. In terms of execution speed,
MFC 1.0 proved to be faster than other techniques for handling Windows messages.2 With MFC
2.0, we have maintained the same commitment to size and speed. If an MFC 1.0 application is
recompiled and linked with MFC 2.0 libraries, only a minor increase in size is expected — on
the order of 20-30K. This increase is due to the fact that some functions, even if they are not
directly called, cannot be removed by the Microsoft smart linker. However, as MFC 2.0 features
are used, an application will grow in size depending on the particular features that are used.

1Sizing Up Application Frameworks and Class Libraries, Dr. Dobb’s Journal, October 1992. A comparison of various application frameworks
for Windows, including Borland OWL and Inmark zApp, which showed the MFC 1.0 application had the smallest executable size and required
the fewest lines of code.

2C++ Q&A, Microsoft Systems Journal, September 1992, Bob Chiverton. A comparison of the Borland DDVT implementation and the
Microsoft Foundation Classes message map facility.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 26

Developer Support

MFC 2.0 provides developer support in a number of key areas. Based on the feedback from
MFC 1.0, Microsoft made a number of improvements in the support provided. Online
documentation and technical notes are supplied in WinHelp format: the tutorial has been
expanded to implement more features; the amount of technical overview material in the
documentation has increased; and the dependencies on the Microsoft C++ compiler have
decreased.

· Complete API Reference: A complete printed reference for all public member functions
and member variables is available. This information is also available via the online help system
(in WinHelp format). In addition, references are provided to Windows APIs where appropriate.

MFC 2.0 includes much more overview material and has been written assuming less Windows
API knowledge on the part of the programmer.

· Tutorial: To familiarize users with MFC 2.0, a tutorial is provided. Users are
guided through a step-by-step procedure for developing a non-trivial Windows-
based application that includes windows, dialogs, graphics, menus, commands,
scrolling, files, printing and persistent data. The source code to the application is
also provided.

· Cookbook: Topics covered in the Class Libraries User’s Guide require more detail
than the tutorial and API reference provide. A broad range of topics is covered in
depth and includes programming examples for exceptions, collections, diagnostics
and application design. Users can refer to these chapters for answers to more
complex questions.

· Technical Notes: Many questions and problems faced by programmers are not
easily documented in traditional forms such as the Class Libraries User’s Guide,
tutorial and API reference. Realizing this, MFC 2.0 includes technical notes, which
are concise notes written by the AFX development and quality-assurance engineers.
These notes describe specific problems and solutions encountered by users of the
system, and include source-code examples and detailed technical information for
intermediate to advanced users. The notes also provide details on the
implementation of the application framework. The technical notes are provided in
WinHelp format in MFC 2.0.

· Sample Source Code: Many feel that the best way to learn how to program for
Windows
and use an application framework is by using sample programs written by the
developers of the product. MFC 2.0 includes 24 sample programs consisting of over

- more -

Microsoft Foundation Classes 2.0 White Paper Page 27

22,000 lines of C++ code. These programs demonstrate nearly all aspects of the
framework in a series of non-trivial applications including OLE clients and servers, a
full-featured MDI text editor, a charting application, use of DLLs and so forth. To
help navigate the samples, a complete description of the sample programs organized
by feature area (in addition to an alphabetic reference) is provided in WinHelp
format.

· Source Code: The complete source code for the MFC 2.0 library is supplied. This
code follows consistent naming and formatting conventions that make it easy to use
and understand. If necessary, developers can build a custom version of the
framework — for example, if a memory model was not provided by the default
installation (MFC supports all memory models), or if different compiler and linker
flags were required.

· Compiler Support: MFC 2.0 has been written using techniques that facilitate the
use of third-party compilers. In general, the work required to use MFC 2.0 with a
third-party compiler involves changing a few #define statements in a compiler-
specific version file, adding a compiler-specific .CPP file, and creating a compiler-
specific makefile.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 28

Scalable Architecture for the Future

The Microsoft Foundation Classes represent an entire family of class libraries. The design of
MFC 2.0 incorporates an architecture that is highly scalable; as new versions of the Windows
operating system are released, the Microsoft Foundation Classes will grow in a natural manner to
encompass new capabilities. As a case in point, MFC 2.0 is designed to facilitate application
portability to the new 32-bit Windows API, including Windows NT. Programs written using
the Microsoft Foundation Classes need only be recompiled in order to work with 32-bit
Windows APIs.

Design Philosophy

With the introduction and acceptance of MFC, many developers have asked Microsoft to provide
a succinct set of design goals that the AFX group followed in designing MFC. The central
design tenet of MFC is to facilitate and simplify programming for the Windows environment,
while providing a path for growth into future Windows environments. Achieving this design
goal included adherence to a set of design principles which were the result of a design and
prototype phase.1

· Application frameworks for Windows should fully exploit the power of the C++
language without overwhelming the programmer. C++ is a complex language with
hundreds of new features. A class library should therefore utilize a sensible subset
of the C++ language while at the same time permitting the use of the entire C++
language.

· Application frameworks for Windows should present a model that requires minimal
relearning on the programmer’s part. Developers who have experience with the
Windows Software Development Kit (SDK) should be able to quickly comprehend the
programming model, class hierarchy and naming conventions. By mixing traditional
C-language SDK code with C++ objects for Windows, programmers should be able to
produce readable source code that can be easily maintained. In addition, programmers
should be able to leverage third-party materials such as books, sample code and
courses, and should not be forced to learn an entirely new paradigm or API.
Developers who are not familiar with C/SDK programming should be able to learn
Windows-based programming faster using an application framework, because the
application framework shields the programmer from the low-level details and labor
associated with SDK programming.

· Recognizing that a major end-user benefit of Windows is the standard user-interface
paradigm shared by most applications, an application framework should support the
standard Windows interface with minimal coding. At the same time, the application
framework should be flexible enough to be used for specialized user-interface

1A Tale of AFX at Microsoft, Microsoft Developer Network News, Fall 1992.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 29

elements. The ability to customize the user interface by overriding a member
function is important; but equally important is the ability to call native Windows
APIs for maximum flexibility and power.

· An application framework should represent a balance between power and efficiency.
Application frameworks that attempt to provide too high a level of abstraction through
“heavy” classes with many virtual member functions usually produce large, slow
applications. But abstraction does not necessarily imply big and slow. The most
elegant solutions are usually those that are the smallest and fastest.

· With its broad market support, the Windows environment will be around for many
years. Its capabilities will grow substantially as new versions, such as Windows NT
and Win32s, are released. An application framework must therefore represent more
than a set of classes; it must be a scalable architecture that grows as the Windows
environment grows.

As this paper demonstrated, the MFC 2.0 application framework working in concert with
AppWizard, ClassWizard, and App Studio implements these principles. Following
these principles over the course of the development of MFC 1.0 and MFC 2.0 has
resulted in an application framework that is the C++ interface to Windows needed by
C++ programmers; that provides an architecture and high-level functionality
expected from an application framework; and that at the same time satisfies the size
and speed requirements of professional developers for Windows.

- more -

Microsoft Foundation Classes 2.0 White Paper - DRAFT Page 30

Microsoft Foundation Classes 2.0: Class Hierarchy

µ §

- more -

Microsoft Foundation Classes 2.0 White Paper Page 31

Appendix A: AppWizard

AppWizard makes it easy to get started using MFC 2.0 because it automates the first steps in
using the application framework. For nearly all applications, the fastest and easiest way to get
started using MFC 2.0 is to run AppWizard and work with the application template that it
creates. AppWizard creates a fully compilable, ready-to-go, full-featured, standard application
for Windows.

One of the toughest problems faced by a developer trying to use an application framework is
trying to figure out where to start. The C/SDK programmer starts a new application by copying
a template, such as GENERIC, that has the standard message loop, WinMain, and other
associated grunge. With MFC 2.0 these steps are not needed, since the architecture supports
them already without any coding. If you want your application to use some of the high-level
architectural features, such as printing documents and views, then you need an infrastructure to
build upon. AppWizard provides that infrastructure by supplying the project files you need to
immediately reap the benefits of MFC 2.0 for writing Windows-based applications.

AppWizard is run from the Visual WorkBench’s Project menu. To get started, you just supply a
directory for your application. Since AppWizard is tuned for substantial applications, it enforces
the rule that each application must have its own source directory. You can select a number of
options to customize the initial contents of your application.

Before we explore what AppWizard does for you, it is important to understand what AppWizard
does not do for you. AppWizard is not a CASE tool or code generator, but rather it is an
efficient way to leverage the power of the code within the application framework. AppWizard is
only run a single time for each application. If at a later time you require some of the
functionality that AppWizard can provide, you must add the code manually; or often you can use
ClassWizard. This permits MFC 2.0 applications to be free form and not impose any artificial
structure on programmers, as is common with CASE tools and code generators. AppWizard
does not require you to maintain any special data files, but rather it works the way you do. The
output of AppWizard is a set of source files that use the application framework, and as such
provides more structure than code. The code that does the work for you is in the application
framework.

As an indication of the powerful combination of AppWizard and MFC 2.0, the following is a list
of features in a fully enabled AppWizard-created application template.

· MDI application (SDI is optional)

· Toolbar with buttons mapping to the menu commands File New, File Open, File
Save, File Print, Edit Cut, Edit Copy, Edit Paste, Help About and context-sensitive
SHIFT-F1

· Status bar with menu command prompt strings for all commands and indicators for
Num Lock, Scroll Lock and Caps Lock

- more -

Microsoft Foundation Classes 2.0 White Paper Page 32

· File menu commands for New, Open, Close, Save, Save As, Print, Print Preview,
Print Setup, Exit and recent file list

· Standard dialog support for obtaining file name information from the user (for Open,
Save As)

· Standard dialog support for Print and Print Set-up

· Print preview support including Next/Prev Page, Two Page view and Zoom In/Out

· Edit menu hooks for Undo, Cut, Copy and Paste

· OLE 1.0 command and user-interface support for Edit menu commands Paste Link,
Insert New Object, Links and Object

· View menu to enable or disable the toolbar and/or status bar

· Window menu commands New Window (including correctly naming each window
by appending a numeric index), Cascade, Tile, Arrange Icons and an active window
list

· Online Help support including a help file with content covering all of the standard
commands

This functionality requires no coding on your part — just invoke AppWizard from the Visual
WorkBench and compile the program. This application contains an enormous
amount of functionality, but since it leverages MFC 2.0’s reusable classes this
AppWizard application contains fewer than 700 lines of C++ source code and its
executable occupies only 117K.

In order to use the architectural features in MFC 2.0, you usually need to derive one or more C+
+ class(es) that will contain your application-specific code. AppWizard automatically derives
classes for the most common MFC 2.0 components. First, AppWizard will derive an application
class from CWinApp, as every MFC application requires this. Every application also has a main
window, which can be either MDI or SDI, and AppWizard will provide you with a derived
CFrameWnd or CMDIFrameWnd class for your application based upon your preference.
AppWizard will derive a CDocument and CView class for you and install a document template
so that you are automatically taking advantage of the document/view architecture. For your
CDocument-derived class, AppWizard lets you specify the file type (suffix) and descriptive
name for the document types, and provides intelligent defaults for all class and file names. Most
MFC 1.0 users indicated they are implementing toolbar and status bar user-interface elements in
their applications, so AppWizard will create these automatically if you require them. Similarly,
if your application will support printing and print preview, AppWizard will add the necessary
menu commands and command handlers to your application. Other options available for
creating an MFC 2.0 application include context-sensitive help and OLE client support.

In addition to the required and optional classes that AppWizard provides for your application,
AppWizard also creates a number of supporting files. Every Windows-based application
requires a resource script, so AppWizard provides one. The supplied script includes all of the

- more -

Microsoft Foundation Classes 2.0 White Paper Page 33

application’s menus, strings, keyboard accelerators, default icons, a default toolbar bitmap,
version resource and even a dialog for the About box. The binary files such as bitmaps and
icons are placed in a subdirectory, so they do not clutter your project’s main directory. If your
application requires OLE client or context-sensitive help support, then AppWizard will create
several additional files, such as an OLE registration file or a subdirectory containing online
documentation in WinHelp format.

Finally, AppWizard will create a project file (.MAK file) for use with the Visual WorkBench.
This file will contain all the required compiler settings for building a debug or retail version of
your application template. This project will be opened by the Visual WorkBench after
AppWizard is finished, so all you need to do is build the project and you will have a running
application.

After running AppWizard you will have a project directory that contains a number of files. For
example, AppWizard creates a separate header file (.H) and separate source file (.CPP) for each
of the classes in the application, which includes classes derived from CWinApp, CDocument,
CView, and CFrameWnd (or CMDIFrameWnd). AppWizard is only used to get you started
with the application framework, and is only used a single time for a given project. Since
AppWizard creates only standard source files and places no restriction on how they are
organized, you are free to structure your project in any manner that you see fit. Using
AppWizard, you are free to work the way you are used to working. To make it easy to
document the project structure, AppWizard also creates a standard text file that describes all the
files in the project. It is a good practice to keep this file up to date as you add new files to your
application source.

Once you have completed your application template with AppWizard, you are ready to begin
adding application-specific code and user-interface elements. AppWizard will, optionally,
comment your derived classes with indications of where to add specific code. The following
example shows how AppWizard indicates where to add code for loading and saving a document.
The class CMyDoc is the CDocument-derived class created by AppWizard.

void CMyDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}

}

Figure 6

You can use the Visual WorkBench to browse your application’s source code and add
your own functionality. At this point in the application development cycle you are

- more -

Microsoft Foundation Classes 2.0 White Paper Page 34

done with AppWizard. Another tool is provided that enables you to connect user-
interface elements to your code as easily as Microsoft’s Visual Basic programming
system and to add classes and maintain message maps. ClassWizard, which is
discussed in the next section, works with standard C++ source code to provide all of
this support.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 35

Appendix B: ClassWizard

- more -

Microsoft Foundation Classes 2.0 White Paper Page 36

ClassWizard ties together MFC 2.0, App Studio and the Visual Workbench, and makes it easy
for you to move seamlessly between user-interface elements and application code. ClassWizard
is modeled after the point-and-click interface in Visual Basic. In Visual Basic you can double-
click on a user-interface element such as a menu item, and immediately edit the code for that
command. ClassWizard gives you that same functionality using interfaces that are built using
standard Windows resources and App Studio connected to standard C++ code and MFC 2.0.
Thus you gain the benefits of moving directly between C++ code and user-interface elements as
in Visual Basic, while at the same time you have the full power of industry-standard C++, MFC
2.0, as well as the Windows API. ClassWizard assists you in handling all standard Windows
messages and commands by maintaining the class’ message map, adding new MFC 2.0-derived
classes, and maintaining all of the dialogs’ data exchange code.

After you create an application template with AppWizard, you have several derived classes to
customize. Normally you will be adding code for application-specific responses to standard
Windows messages, and you will be adding code to handle commands for the new user-interface
elements you will create with App Studio. In MFC 1.0 each CWnd-derived class had a message
map that you were required to maintain manually. The MFC message-map implementation
requires some macro syntax. We chose to use macros rather than implement a non-standard
compiler extension so that MFC would be compiler-independent. Unfortunately MFC 1.0
programmers found it somewhat cumbersome to maintain the message-to-member function
mapping. Microsoft introduced ClassWizard to automatically maintain all message maps for
you, while at the same time continuing to use only standard C++. ClassWizard performs source-
code maintenance exactly as you would manually, but is less error-prone and much faster. Just
as with AppWizard, ClassWizard was designed to work the way you do. You can continue to
organize your source code in the manner you require, without fear of losing any data, because
ClassWizard works on small, well-defined portions of your source.

As an example of how ClassWizard works for you, let’s consider adding a message handler for the
WM_MOUSEMOVE message to a CView-derived class. Assuming a message map has already
been set up, which ClassWizard does automatically, you will need to add three pieces of code to
two different files: a function prototype for OnMouseMove in the .H file, a message map entry in
the .CPP file, and a member function definition in the .CPP file. ClassWizard does these steps for
you. In the Figure 7 all of the ClassWizard added lines are highlighted.

- more -

Microsoft Foundation Classes 2.0 White Paper Page 37

class CMyView : public CView

{
// ...

// Generated message map functions
protected:

//{{AFX_MSG(CMyView)
afx_msg void OnFilePrint();
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnMouseMove(UINT nFlags, CPoint point);
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};

BEGIN_MESSAGE_MAP(CMyView, CView)

//{{AFX_MSG_MAP(CMyView)
ON_COMMAND(ID_FILE_PRINT, OnFilePrint)

ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()
ON_WM_MOUSEMOVE()
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

void CMyView::OnMouseMove(UINT nFlags, CPoint point)
{

// TODO: Add your message handler code here and/or call default
CView::OnMouseMove(nFlags, point);

}

So as you can see from this example, ClassWizard saves you programming and editing
time, greatly reduces the number of potential errors in your code, and removes the
bookkeeping responsibility associated with messages and commands. As with
AppWizard, ClassWizard uses comments to indicate where you should insert code
and any special notes for a particular message. The OnMouseMove also contains a
call to the base-class message handler, which will perform any default processing of
the message if required. Since ClassWizard is smart about which message you are
handling, it will automatically insert message-specific code in the handler stub, such
as calling the base-class handler when needed. Using this context-based intelligence,
ClassWizard filters the list of messages that a given user-interface object or class can
handle, based on the type of the object. The comments containing AFX_MSG delimit
the portions of your code that ClassWizard will modify. ClassWizard will never
modify any code outside of these comments. In fact, if you wish to prevent
ClassWizard from modifying a particular message handler or message map entry, you
are free to move it outside of the comment blocks. By using these standard C++
comments as indicators to ClassWizard, your code can be maintained as standard C+
+ code without any secondary files or additional database, and without parsing C++
code. ClassWizard’s main function is to assist the programmer with managing user-

- more -

Microsoft Foundation Classes 2.0 White Paper Page 38

interface to C++ code mapping, which utilizes the MFC message-map structure and
the MFC 2.0 command architecture.

In addition, ClassWizard also makes it easy to add new classes that are derived from the MFC
2.0 class CCmdTarget, or any of its derived classes. With ClassWizard you can create a new
class derived from any of the basic Windows classes such as CWnd, CFrameWnd
CMDIChildWnd and CDialog. ClassWizard also lets you create new classes derived from the
CView and CDocument architectural classes, which makes it easy to add a new view type to
your existing application. ClassWizard can derive new classes based on the high-level
abstractions CFormView, CScrollView and splitter windows. Each class you create with
ClassWizard is a standard C++ class that uses the MFC 2.0 base class. ClassWizard allows you
to specify the header file and implementation file for a class, and supports maintaining multiple
classes in a single file.

If you have an MFC 1.0 application that you wish to use with ClassWizard, all you need to do is
add the AFX_MSG comments described above and use the ClassWizard Import Class feature,
which interprets the class declaration. Migrating your classes to ClassWizard is discussed in the
documentation.

ClassWizard, in conjunction with App Studio, supports several additional features for managing
CDialog-derived classes. When you are editing a dialog resource in App Studio, you can invoke
ClassWizard and automatically create a C++ class for that dialog if one does not exist. Thus
without typing any code you can connect a dialog resource to a C++ class derived from an MFC
2.0 base class. Also, for dialogs (as well as CFormView classes, since they are based on dialog
resources) ClassWizard can be used to implement DDX/DDV functionality for initializing,
validating and obtaining information from end-user dialogs. ClassWizard’s Edit Variables
command lets you attach class member variables to each control in the dialog. Since
ClassWizard understands all of the Windows controls, the variables you add are correctly typed.
For example, if your dialog contains a checkbox control, ClassWizard knows that it should be
represented by a Boolean variable in the CDialog-derived class. The application framework uses
these variables to initialize the state of the controls in your dialog. While the dialog is visible to
the user, MFC 2.0 will validate any information entered by the user based on criteria specified
using ClassWizard. If the user clicks the OK button, MFC 2.0 will automatically transfer the
contents of the controls to these variables, which can then be used by your code as needed.
ClassWizard handles all of this DDX/DDV functionality for dialogs without any additional
coding.

#########

- more -

Microsoft Foundation Classes 2.0 White Paper Page 39

Microsoft is a registered trademark and Windows, Windows NT, Win32, Win32s, Visual Basic and Visual C++ are trademarks of Microsoft
Corporation.
CompuServe is a registered trademark of CompuServe, Inc.
Borland is a registered trademark of Borland International, Inc.

Copyright © 1993 by Microsoft Corporation

This document may be reprinted with attribution for non-commercial, informational
purposes by members of the press or academic institutions. Any other use requires the
express written consent of Microsoft Corporation.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft must
respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented
after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

- more -

	For more information contact:
	Microsoft Corporation
	Eric Lang, (206) 882-8080
	Waggener Edstrom
	Martin Middlewood, (503) 245-0905
	Introduction
	Distinguished Benefits
	· C++ Windows API: MFC 1.0 introduced a standard application framework interface for programmers using C++ to develop applications for Windows. MFC 2.0 continues this standard. MFC 1.0 applications need only be recompiled to begin taking advantage of MFC 2.0 features.
	MFC follows a simple set of conventions that leverage the Windows API; those already familiar with the Windows API are able to look at MFC code and have a clear understanding of the concepts involved. To those that are new to Windows-based programming, this leveraging of the Windows API helps programmers take advantage of the many sources of information available for learning the concepts behind Windows. For example, sample code and concepts from Charles Petzold’s Programming Windows can be easily translated to the MFC API. In addition to being able to reuse concepts, MFC lets you easily reuse low-level C code in MFC applications because of these conventions.
	MFC provides a comprehensive object-oriented encapsulation of most Windows API functions. Its classes provide support for application start-up, window creation, multiple document interface windows, menus, dialog boxes, controls, list boxes, graphical primitives and so forth.
	· High-level Abstractions: Many users commented that MFC 1.0 did not contain abstractions that make it easier to write Windows-based applications. MFC 2.0 addresses this by providing high-level abstractions that let programmers concentrate on the real task of the application being written, rather than on mundane Windows-based tasks such as implementing a toolbar. MFC 2.0 provides classes that encapsulate thousands of lines of robust and optimized Windows C++ code. For example, the Print Preview feature, which requires no additional code on the programmer’s part, consists of more than 2,000 lines of MFC 2.0 framework code. A programmer wishing to add a toolbar to an application needs to add less than 10 lines of code calling three APIs to exploit more than 1500 lines of MFC 2.0 framework code.
	· Canned Functionality: MFC 2.0 includes a large amount of prebuilt, canned functionality. The primary benefit of an application framework is the use of professional code written by experienced developers. The C++ programming language, using inheritance, encapsulation and polymorphism, makes it much easier to take advantage of reusable components. MFC 2.0 leverages these features of C++ to provide a body of expertly written, and easily customizable, Windows-based functionality. For example, the standard MFC 2.0 implementation of the File Open command automatically handles all the steps necessary to prompt the user, open a file, read the data, create a window, draw the contents and so on. Programmers only need to provide an implementation of application-specific file I/O and drawing code, and MFC 2.0 does the rest. Perhaps the most important part of MFC 2.0’s prebuilt functionality is that it represents an evolved and standard implementation of the recommended techniques for solving common Windows-based programming problems.
	· Small and Fast Executables: Research shows that the one of the most important concerns of Windows developers is the need for small and fast executables. Because MFC 1.0 was modeled so closely after the Windows API, the size of an MFC 1.0 C++ application was only slightly larger than its equivalent C/SDK application. MFC 2.0 is still the smallest and fastest application framework available for Windows. MFC 2.0 applications are only slightly larger than MFC 1.0 applications (if you recompile MFC 1.0 code and use MFC 2.0 libraries). If an application uses the high-level features and canned functionality of MFC 2.0, it is comparable in size to any other implementation of those same features.

	MFC 2.0 Components
	Architecture Classes
	Commands
	Documents and Views
	Printing
	Dialog Data Exchange and Validation (DDX/DDV)
	void CMyDialog::DoDataExchange(CDataExchange* pDX)
	{
	DDX_Check(pDX, IDC_CHECKBOX, m_bUser);
	DDX_Text(pDX, IDC_EDIT, m_strName);
	DDV_MaxChars(pDX, IDC_EDIT, m_strName, 20);
	}
	Figure 1

	Help

	High-level Abstractions
	Form View
	Edit View
	Scrolling View
	Splitter Window
	Print Preview
	Toolbar
	Status Bar
	Dialog Bar and Control Bar
	OLE 1.0 Support

	Windows API Classes
	Standard Application Support
	Frame Windows
	Controls
	Graphics/GDI
	Dialogs

	General-purpose Classes
	Run-time Object-type Information
	Object Persistence
	Data Structures
	Strings
	Files
	Time and Date
	Exception Handling

	Debugging and Diagnostic Support
	Professional Windows-based Development

	Sample Program: MultiPad
	1. // MultiPad : Simple MDI text editor written using MFC 2.0
	2. ///
	3. // Interface
	4. #include <afxwin.h> // MFC core and standard components
	5. #include <afxext.h> // MFC high-level abstractions
	6. #include "resource.h" // Resource symbols
	7. class CMultiPadApp : public CWinApp
	8. {
	9. virtual BOOL InitInstance();
	10. afx_msg void OnAppAbout();
	11. DECLARE_MESSAGE_MAP()
	12. };
	13. class CMainFrame : public CMDIFrameWnd
	14. {
	15. CStatusBar m_StatusBar;
	16. CToolBar m_ToolBar;
	17. afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
	18. DECLARE_MESSAGE_MAP()
	19. DECLARE_DYNCREATE(CMainFrame)
	20. };
	21. class CPadDoc : public CDocument
	22. {
	23. virtual void Serialize(CArchive& ar);
	24. DECLARE_DYNCREATE(CPadDoc)
	25. };
	26. ///
	27. // Implementation
	28. CMultiPadApp NEAR theApp; // define a single application object
	29. BEGIN_MESSAGE_MAP(CMultiPadApp, CWinApp)
	30. ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
	31. ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew) // file commands...
	32. ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
	33. ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
	34. END_MESSAGE_MAP()
	35. BOOL CMultiPadApp::InitInstance()
	36. {
	37. SetDialogBkColor();
	38. LoadStdProfileSettings();
	39. AddDocTemplate(new CMultiDocTemplate(IDR_TEXTTYPE,
	40. RUN-TIME_CLASS(CPadDoc), RUN-TIME_CLASS(CMDIChildWnd),
	41. RUN-TIME_CLASS(CEditView)));
	42. m_pMainWnd = new CMainFrame;
	43. ((CFrameWnd*)m_pMainWnd)->LoadFrame(IDR_MAINFRAME);
	44. m_pMainWnd->DragAcceptFiles();
	45. EnableShellOpen();
	46. RegisterShellFileTypes();
	47. m_pMainWnd->ShowWindow(m_nCmdShow);
	48. if (m_lpCmdLine[0] == 0)
	49. OnFileNew();
	50. else
	51. OpenDocumentFile(m_lpCmdLine);
	52. return TRUE;
	53. }
	54. void CMultiPadApp::OnAppAbout()
	55. {
	56. CDialog about(IDD_ABOUTBOX)
	57. about.DoModal();
	58. }
	59. IMPLEMENT_DYNCREATE(CMainFrame, CMDIFrameWnd)
	60. BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
	61. ON_WM_CREATE()
	62. END_MESSAGE_MAP()
	63. static UINT buttons[] =
	64. {
	65. ID_FILE_NEW, ID_FILE_OPEN, ID_FILE_SAVE, ID_SEPARATOR,
	66. ID_EDIT_CUT, ID_EDIT_COPY, ID_EDIT_PASTE, ID_SEPARATOR,
	67. ID_FILE_PRINT, ID_APP_ABOUT
	68. };
	69. static UINT indicators[] =
	70. {
	71. ID_SEPARATOR, ID_INDICATOR_CAPS, ID_INDICATOR_NUM, ID_INDICATOR_SCRL
	72. };
	73. int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
	74. {
	75. CMDIFrameWnd::OnCreate(lpCreateStruct);
	76. return ((m_ToolBar.Create(this) &&
	77. m_ToolBar.LoadBitmap(IDR_MAINFRAME) &&
	78. m_ToolBar.SetButtons(buttons, sizeof(buttons)/sizeof(UINT)) &&
	79. m_StatusBar.Create(this) &&
	80. m_StatusBar.SetIndicators(indicators, sizeof(indicators)/sizeof(UINT)))
	81. ? 0 : -1);
	82. }
	83. IMPLEMENT_DYNCREATE(CPadDoc, CDocument)
	84. void CPadDoc::Serialize(CArchive& ar)
	85. {
	86. ((CEditView*)m_viewList.GetHead())->SerializeRaw(ar);
	87. }
	Lines 1-6:
	These include the standard MFC 2.0 header files. The file RESOURCE.H, which isn’t shown here, contains the symbol definitions for the commands and user-interface elements; it is usually edited only by App Studio.

	Lines 7-12:
	Every MFC application must declare a class derived from CWinApp. The CWinApp class encapsulates much of the mundane work normally associated with getting an application started and running. There are overridable member functions for initialization, message-loop processing, idle-loop processing, as well as support for File Manager drag and drop, Shell registration, and most recently used file list management. In this example, we override InitInstance to perform some one-time initialization. Since a CWinApp-derived class is a command target, there is also a message map for this class. The OnAppAbout command handler is used for the About box. Lines 10 and 11 are usually maintained by ClassWizard, so this is code you do not normally write manually.

	Lines 13-20:
	CMainFrame is a class derived from the MFC 2.0 class CMDIFrameWnd, which provides support for MDI window management. The CMainFrame class adds two member variables for the toolbar and status bar, each of which is one of MFC 2.0’s high-level abstractions. Lines 17-19 are usually maintained by ClassWizard and indicate that the class has a message map that will handle the OnCreate message (WM_CREATE). The DECLARE_DYNAMIC macro allows the application framework to dynamically create the frame window.

	Lines 21-25:
	MultiPad manages documents that are merely standard text files. The CPadDoc class is needed to implement the Serialize overridable member function. Serialize is called automatically by the application framework in response to File Open, File Save and File SaveAs commands.

	Line 28:
	By declaring a CMultiPadApp class object, the constructor for that object will be invoked at program start-up. Every MFC application must define a single application object that replaces the normal WinMain functionality. When the program starts, MFC 2.0 automatically calls the initialization functions, and if they are successful, the framework’s message loop will be run. When the user executes the File Exit command, the application terminates.

	Lines 29-34:
	These lines implement the message map for the CMultiPadApp. Each one is a command handler and each handles one of MFC 2.0’s standard commands. If you are familiar with MFC 1.0, you will notice that the message-map structure is unchanged. Further down in the code is a definition for the OnAppAbout member function, which is called when the user executes the Help About command. The three other commands are all implemented using the canned implementation, which is why there are references to the application framework class CWinApp. These message map entries implement the File New, File Open and File Print Setup commands. Although these entries could automatically be supplied for all applications, MFC 2.0 requires that you pay only for functionality that you use. For example, if an application does not support printing, then MFC 2.0 does not force the application to link in all of its printing code. MFC 2.0 follows this swap-tuning practice frequently. Rather than having large executables, MFC 2.0 allows programmers to add a single line of code that enables the canned library implementation.

	Lines 35-36:
	The InitInstance function is actually the bulk of the code that needs to be written to implement the application. This function is called automatically by MFC 2.0 when the application starts.

	Line 37:
	MFC 1.0 supported new look gray-colored dialog boxes by default. However, a number of users commented that they would prefer a single function that lets them choose the background color of dialogs. MFC 2.0 therefore added the SetDialogBkColor function for that purpose. The default arguments, which are not shown, set the dialog background and text colors to the MFC 1.0 values.

	Line 38:
	The LoadStdProfileSettings function loads the user’s preferences from the MULTIPAD.INI file stored in the user’s Windows directory, that is the preferred mechanism for saving profile settings. If an application has other settings which should be restored, then InitInstance is the best place to restore them, along with the standard MFC 2.0 settings. The standard profile settings include the most recently used file list in the File menu, and some print preview information. This API is an example of how MFC 2.0 provides prebuilt functionality that a program does not need to pay for if it does not use the feature. If an application does not need the profile settings, then omitting this line will not require the application to maintain an .INI file, and leaves the MFC 2.0 code that implements the feature out of the final executable.

	Lines 39-41:
	In order to use the document/view architecture, it is necessary to create a document template for each document type, which is done by calling the AddDocTemplate API. The document template orchestrates the creation of the document, view and frame window. Since this is an MDI application, the CMultiDocTemplate class is used. Also, since the document template needs to be used after InitInstance, it is allocated on the heap using the C++ new operator. MFC 2.0 automatically frees the memory associated with the document template. The constructor for CMultiDocTemplate requires four parameters. The first parameter is the ID of a string resource that contains several strings, including the default window title, the description of the document type and the strings needed by the standard file dialog. Each of the other three arguments is a run-time class, which gives the application framework enough information to create objects of the given type. The second argument is the run-time class of the document type, which in this program is CPadDoc. The third argument is the run-time class of the frame window to be used for this application. Since this is an MDI application, the CMDIChildWnd class is used directly. The frame window can also be an SDI frame or it can be any class derived from CFrameWnd. The fourth argument is the name of the view class. MultiPad requires a view that can draw and edit text, manage the clipboard, and implement find/replace and printing. MFC 2.0 provides this canned functionality in the high-level abstraction class CEditView. The programmer only needs to pass the run-time class for CEditView to the document template and the application will use the built-in MFC 2.0 class with the document class. For more specialized applications one can supply any CView-derived class to the document template.

	Lines 42-43:
	The next step in initializing the application is to create an application window. (The allocation of the application window was declared previously in lines 13-20). The LoadFrame API creates the application window and integrates it with the application framework architecture. For example, the API assigns a help context to the window, and loads the appropriate icon, accelerator table and menu from the resources in the executable file. The cast is required because the m_pMainWnd member variable in the CWinApp class is a CWnd pointer and CMDIFrameWnd is derived from that class. The application framework is flexible in allowing any window such as a dialog to be the application window.

	Lines 44-46:
	In order to support the File Manager drag and drop and the File Manager Open and Print commands, these three lines are required. Adding these three lines enables these features for applications that require them, and eliminates the need to add a larger amount of code and a separate registration file (.REG file). In fact, if a document extension is specified when creating an MFC 2.0 application with AppWizard, these lines are automatically placed in the application’s InitInstance, as they are in this example.

	Lines 47-53:
	At this point, the application only needs to process the command line. If a file name is present on the command line, the OnFileOpen command handler is called directly; otherwise the OnFileNew handler is called to display a blank “Untitled” window. These functions are implemented in the application framework. In line 47, the ShowWindow API is called to display the application window. As with MFC 1.0, any MFC 2.0 API that is implemented as a direct call to the Windows API, such as ShowWindow, is named the same as the corresponding Windows API. Returning TRUE from InitInstance indicates that the initialization was successful.

	Lines 54-58:
	The OnAppAbout command handler demonstrates how easy it is to bring up a modal dialog in MFC 2.0. The constructor for CDialog requires the ID of the dialog resource, which is created and edited with App Studio. The DoModal call creates the dialog and processes messages until the end user clicks OK.

	Lines 59-62:
	These lines create the message map for the application window. Although MFC 1.0 message maps were edited by hand, MFC 2.0 includes ClassWizard, which maintains message maps automatically. Of course, you are still free to use a standard text editor to manage message maps, as the syntax is unchanged.

	Lines 63-72:
	The toolbar and status bar both require command IDs for the commands that these user-interface abstractions handle. The commands are defined in a simple array of integers. For a toolbar, the array implements one-to-one mapping based on the positions of the button tiles in the toolbar bitmap, which is edited within App Studio. For status bars, the array implements a one-to-one mapping based on the indicator fields of the status bar. Separator entries in either array indicate buttons or indicators that will be skipped.

	Lines 73-82:
	The OnCreate message handler is called in response to the LoadFrame call. OnCreate is the first message a window receives, and is usually the best place to implement one-time initialization of a window. Notice that instead of having to parse wParam and lParam, as is required in C code, the message was mapped directly to a C++ member function. The OnCreate interface provides type-safety and recompile-only portability to Windows NT and Win32sÔ, where a number of messages have changed their wParam and lParam encoding. For the application window, the toolbar and status bar need to be created. First, the base class OnCreate function is called, which is an MFC convention, and then several CToolBar member functions are called. Next, the toolbar is created, the bitmap resource is loaded from the executable, and the buttons are hooked to the commands using the array defined above. This example shows the buttons defined at program initialization, but it is just as easy to alter the buttons programmatically for a fully end-user customizable user interface. The status bar is handled in two steps: First it is created, and then the indicators are set using the commands in the array defined above. Should any of these calls fail (for example, if there are not enough system resources to load the bitmap) then the OnCreate function will fail and the application will not run.

	Line 83:
	The IMPLEMENT_DYNCREATE macro initializes the data structure required by the run-time class mechanism. There will be such a line for each class that maintains run-time type information.

	Lines 84-87:
	In order to read and write the text data of a CPadDoc document, it is necessary to override the Serialize member function. The CEditView class provides an interface that reads and writes the data in the view, so calling the view’s Serialize member function is all that is required. As previously mentioned, a document can have any number of views attached to it, which is why there is a reference to the list of views, m_viewList. This line simply gets the first view, which is known to be a CEditView, and calls the CEditView API that reads and writes the text of the file in a raw (unmodified) format.

	Developer Support
	· Complete API Reference: A complete printed reference for all public member functions and member variables is available. This information is also available via the online help system (in WinHelp format). In addition, references are provided to Windows APIs where appropriate. MFC 2.0 includes much more overview material and has been written assuming less Windows API knowledge on the part of the programmer.
	· Tutorial: To familiarize users with MFC 2.0, a tutorial is provided. Users are guided through a step-by-step procedure for developing a non-trivial Windows-based application that includes windows, dialogs, graphics, menus, commands, scrolling, files, printing and persistent data. The source code to the application is also provided.
	· Cookbook: Topics covered in the Class Libraries User’s Guide require more detail than the tutorial and API reference provide. A broad range of topics is covered in depth and includes programming examples for exceptions, collections, diagnostics and application design. Users can refer to these chapters for answers to more complex questions.
	· Technical Notes: Many questions and problems faced by programmers are not easily documented in traditional forms such as the Class Libraries User’s Guide, tutorial and API reference. Realizing this, MFC 2.0 includes technical notes, which are concise notes written by the AFX development and quality-assurance engineers. These notes describe specific problems and solutions encountered by users of the system, and include source-code examples and detailed technical information for intermediate to advanced users. The notes also provide details on the implementation of the application framework. The technical notes are provided in WinHelp format in MFC 2.0.
	· Sample Source Code: Many feel that the best way to learn how to program for Windows and use an application framework is by using sample programs written by the developers of the product. MFC 2.0 includes 24 sample programs consisting of over 22,000 lines of C++ code. These programs demonstrate nearly all aspects of the framework in a series of non-trivial applications including OLE clients and servers, a full-featured MDI text editor, a charting application, use of DLLs and so forth. To help navigate the samples, a complete description of the sample programs organized by feature area (in addition to an alphabetic reference) is provided in WinHelp format.
	· Source Code: The complete source code for the MFC 2.0 library is supplied. This code follows consistent naming and formatting conventions that make it easy to use and understand. If necessary, developers can build a custom version of the framework — for example, if a memory model was not provided by the default installation (MFC supports all memory models), or if different compiler and linker flags were required.
	· Compiler Support: MFC 2.0 has been written using techniques that facilitate the use of third-party compilers. In general, the work required to use MFC 2.0 with a third-party compiler involves changing a few #define statements in a compiler-specific version file, adding a compiler-specific .CPP file, and creating a compiler-specific makefile.

	Scalable Architecture for the Future
	Design Philosophy
	· Application frameworks for Windows should fully exploit the power of the C++ language without overwhelming the programmer. C++ is a complex language with hundreds of new features. A class library should therefore utilize a sensible subset of the C++ language while at the same time permitting the use of the entire C++ language.
	· Application frameworks for Windows should present a model that requires minimal relearning on the programmer’s part. Developers who have experience with the Windows Software Development Kit (SDK) should be able to quickly comprehend the programming model, class hierarchy and naming conventions. By mixing traditional C-language SDK code with C++ objects for Windows, programmers should be able to produce readable source code that can be easily maintained. In addition, programmers should be able to leverage third-party materials such as books, sample code and courses, and should not be forced to learn an entirely new paradigm or API. Developers who are not familiar with C/SDK programming should be able to learn Windows-based programming faster using an application framework, because the application framework shields the programmer from the low-level details and labor associated with SDK programming.
	· Recognizing that a major end-user benefit of Windows is the standard user-interface paradigm shared by most applications, an application framework should support the standard Windows interface with minimal coding. At the same time, the application framework should be flexible enough to be used for specialized user-interface elements. The ability to customize the user interface by overriding a member function is important; but equally important is the ability to call native Windows APIs for maximum flexibility and power.
	· An application framework should represent a balance between power and efficiency. Application frameworks that attempt to provide too high a level of abstraction through “heavy” classes with many virtual member functions usually produce large, slow applications. But abstraction does not necessarily imply big and slow. The most elegant solutions are usually those that are the smallest and fastest.
	· With its broad market support, the Windows environment will be around for many years. Its capabilities will grow substantially as new versions, such as Windows NT and Win32s, are released. An application framework must therefore represent more than a set of classes; it must be a scalable architecture that grows as the Windows environment grows.

	Microsoft Foundation Classes 2.0: Class Hierarchy
	Appendix A: AppWizard
	void CMyDoc::Serialize(CArchive& ar)
	{
	if (ar.IsStoring())
	{
	// TODO: add storing code here
	}
	else
	{
	// TODO: add loading code here
	}
	}
	Figure 6

	Appendix B: ClassWizard
	class CMyView : public CView
	{
	// ...
	// Generated message map functions
	protected:
	//{{AFX_MSG(CMyView)
	afx_msg void OnFilePrint();
	afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
	afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
	afx_msg void OnMouseMove(UINT nFlags, CPoint point);
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
	};
	BEGIN_MESSAGE_MAP(CMyView, CView)
	//{{AFX_MSG_MAP(CMyView)
	ON_COMMAND(ID_FILE_PRINT, OnFilePrint)
	ON_WM_LBUTTONDOWN()
	ON_WM_LBUTTONUP()
	ON_WM_MOUSEMOVE()
	//}}AFX_MSG_MAP
	END_MESSAGE_MAP()
	void CMyView::OnMouseMove(UINT nFlags, CPoint point)
	{
	// TODO: Add your message handler code here and/or call default
	CView::OnMouseMove(nFlags, point);
	}

